Search results for "Measure data"

showing 2 items of 2 documents

A DUALITY APPROACH TO THE FRACTIONAL LAPLACIAN WITH MEASURE DATA

2011

We describe a duality method to prove both existence and uniqueness of solutions to nonlocal problems like $$(-\Delta)^s v = \mu \quad \text{in } \mathbb{R}^N,$$ ¶ with vanishing conditions at infinity. Here $\mu$ is a bounded Radon measure whose support is compactly contained in $\mathbb{R}^N$, $N\geq2$, and $-(\Delta)^s$ is the fractional Laplace operator of order $s\in (1/2,1)$.

Pure mathematicsGeneral MathematicsDuality (optimization)fractional laplacianmeasure dataExistenceMeasure (mathematics)Duality solutionsFractional LaplacianOrder (group theory)UniquenessMeasure dataMathematicsFractional Laplacian ; Measure data ; Existence ; Uniqueness ; Duality solutions35B40Mathematical analysisexistenceuniquenessduality solutionsBounded function35K55Radon measurefractional laplacian; uniqueness; duality solutions; measure data; existenceUniquenessFractional LaplacianLaplace operator
researchProduct

Quasilinear elliptic equations with singular quadratic growth terms

2011

In this paper, we deal with positive solutions for singular quasilinear problems whose model is [Formula: see text] where Ω is a bounded open set of ℝN, g ≥ 0 is a function in some Lebesgue space, and γ > 0. We prove both existence and nonexistence of solutions depending on the value of γ and on the size of g.

Quadratic growthnonlinear elliptic equations; natural growth condition; vertical asymptote; measure dataApplied MathematicsGeneral MathematicsMathematical analysisOpen setmeasure dataFunction (mathematics)nonlinear elliptic equationsBounded functionvertical asymptoteStandard probability spacenatural growth conditionAsymptoteValue (mathematics)Mathematics
researchProduct